Facade Design Optimization for Daylight with a Simple Genetic Algorithm

نویسندگان

  • Santiago L. Torres
  • Yuzo Sakamoto
چکیده

The aim of the present study was to determine the applicability of a genetic algorithm for the optimization of daylighting systems, as well as the requirements for the lighting simulations to be used. Furthermore, by testing the daylighting performance of a building's facade when several parameters are allowed to change simultaneously, the results were used as a complement of previous parametric studies. The goal of the optimization was to maximize energy savings by reducing visual discomfort while maintaining good daylight penetration. The results were obtained by dynamic simulations using Radiance. Discomfort glare produced by daylight was calculated for several viewpoints inside the building, adapting the blinds' position accordingly for each time step tested. Fitness was defined as the proportion of the annual lighting requirements that can be replaced by daylight. The results show a fast convergence in the beginning, followed by a minimal improvement in subsequent generations. Several trials over 200 generations showed similar evolution and consistent results, suggesting that genetic algorithms can be used effectively for facade design optimization considering daylight performance. Finally, some possible improvements and modifications are further discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design

Shading design to optimize daylighting is in many cases achieved through a designer’s sense based on prior knowledge and experience. However, computer-assisted parametric techniques can be utilized for daylighting design in an easy and much more accurate way. If such tools are utilized in the early stages of a project, this can be more effective for sustainable design. This study compares the c...

متن کامل

Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)

An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...

متن کامل

Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm

An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007